The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans.
نویسندگان
چکیده
Nonalcoholic fatty liver disease (NAFLD) is associated with all features of the metabolic syndrome. Although deposition of excess triglycerides within liver cells, a hallmark of NAFLD, is associated with a loss of insulin sensitivity, it is not clear which cellular abnormality arises first. We have explored this in mice overexpressing carbohydrate responsive element-binding protein (ChREBP). On a standard diet, mice overexpressing ChREBP remained insulin sensitive, despite increased expression of genes involved in lipogenesis/fatty acid esterification and resultant hepatic steatosis (simple fatty liver). Lipidomic analysis revealed that the steatosis was associated with increased accumulation of monounsaturated fatty acids (MUFAs). In primary cultures of mouse hepatocytes, ChREBP overexpression induced expression of stearoyl-CoA desaturase 1 (Scd1), the enzyme responsible for the conversion of saturated fatty acids (SFAs) into MUFAs. SFA impairment of insulin-responsive Akt phosphorylation was therefore rescued by the elevation of Scd1 levels upon ChREBP overexpression, whereas pharmacological or shRNA-mediated reduction of Scd1 activity decreased the beneficial effect of ChREBP on Akt phosphorylation. Importantly, ChREBP-overexpressing mice fed a high-fat diet showed normal insulin levels and improved insulin signaling and glucose tolerance compared with controls, despite having greater hepatic steatosis. Finally, ChREBP expression in liver biopsies from patients with nonalcoholic steatohepatitis was increased when steatosis was greater than 50% and decreased in the presence of severe insulin resistance. Together, these results demonstrate that increased ChREBP can dissociate hepatic steatosis from insulin resistance, with beneficial effects on both glucose and lipid metabolism.
منابع مشابه
Dietary Macronutrient Composition Directs ChREBP Isoform Expression and Glucose Metabolism in Mice
Carbohydrate response element binding protein (ChREBP) is a lipogenic transcription factor that is thought to be involved in the development of hepatic steatosis and insulin resistance. Increased ChREBP expression in liver results in increased hepatic steatosis, and the isoform ChREBPβ in adipose tissue can predict insulin sensitivity in obese humans. As ChREBP is activated by glucose, it was p...
متن کاملDeletion of hepatic carbohydrate response element binding protein (ChREBP) impairs glucose homeostasis and hepatic insulin sensitivity in mice
OBJECTIVE Carbohydrate response element binding protein (ChREBP) is a transcription factor that responds to glucose and activates genes involved in the glycolytic and lipogenic pathways. Recent studies have linked adipose ChREBP to insulin sensitivity in mice. However, while ChREBP is most highly expressed in the liver, the effect of hepatic ChREBP on insulin sensitivity remains unknown. To cla...
متن کاملChREBP regulates fructose-induced glucose production independently of insulin signaling.
Obese, insulin-resistant states are characterized by a paradoxical pathogenic condition in which the liver appears to be selectively insulin resistant. Specifically, insulin fails to suppress glucose production, yet successfully stimulates de novo lipogenesis. The mechanisms underlying this dysregulation remain controversial. Here, we hypothesized that carbohydrate-responsive element-binding pr...
متن کاملLeptin ameliorates insulin resistance and hepatic steatosis in Agpat2-/- lipodystrophic mice independent of hepatocyte leptin receptors.
Leptin is essential for energy homeostasis and regulation of food intake. Patients with congenital generalized lipodystrophy (CGL) due to mutations in 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2) and the CGL murine model (Agpat2(-/-) mice) both have severe insulin resistance, diabetes mellitus, hepatic steatosis, and low plasma leptin levels. In this study, we show that continuous le...
متن کاملSalt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice.
Obesity and type 2 diabetes are associated with increased lipogenesis in the liver. This results in fat accumulation in hepatocytes, a condition known as hepatic steatosis, which is a form of nonalcoholic fatty liver disease (NAFLD), the most common cause of liver dysfunction in the United States. Carbohydrate-responsive element-binding protein (ChREBP), a transcriptional activator of glycolyti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 122 6 شماره
صفحات -
تاریخ انتشار 2012